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New phenomena in the Eckhaus instability of 
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An analytical study on the Eckhaus instability of moderately nonlinear thermal 
Rossby waves is developed. A solvability condition of the lowest order is derived. 
The condition not only produces results that agree reasonably well with the earlier 
Galerkin formulation, but also leads to some new findings that are otherwise difficult 
to discover by the previous method. Over a wide range of parameters, this paper 
reports the existence of a branch of the stability limit that corresponds to a pair of 
disturbances with a finite, rather than an infinitesimal wavenumber modulation. As 
the Prandtl number tends to a small value, the asymmetry between the two branches 
of the stability limit becomes very pronounced, which is manifested as a severely 
distorted stability region. 

1. Introduction 
Convection rolls in a rapidly rotating system with slanted end boundaries can be 

realized in the form of thermal Rossby waves. The existence of these wave modes has 
been demonstrated through both analytical and experimental studies. The waves are 
of significance in the context of geophysical and astrophysical applications since the 
latter are typically characterized by the release of buoyancy energy under the 
influence of rapid rotation. Since the waves can also give rise to orderly mean flows 
through their fluctuating motion, they offer a widely acceptable mechanism for 
explaining the large-scale mean flows in the Earth’s core and in the major planets’ 
atmospheres. For an extensive review on the subject, readers are referred to Busse 
(1982). Under laboratory conditions, the waves can be realized in a rapidly rotating 
cylindrical annulus with slanted end boundaries, where the centrifugal force replaces 
the role of the gravity force (see Busse & Carrigan 1975; Azouni, Bolton & Busse 
1986). The laboratory realization of the waves further stimulates the desire to 
understand the hydrodynamic stability properties, which might eventually enhance 
our knowledge on the problem of transition to turbulence. In two of the previous 
surveying papers, Busse & Or (1986) and Or & Busse (1987), many bifurcation and 
instability properties of the waves have been identified. In particular, an unusual 
Eckhaus instability was briefly reported. Since such a phenomenon appears new, and 
it does not seem to be found in any other better-known pattern-forming systems, it 
is of interest that this instability be studied in further detail. 

Eckhaus instability is of general interest to fluid dynamicists on account of its 
common occurrence in continuous periodic systems, and its close relationship with 
the wavelength changing process. Studies of the instability has appeared in 
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numerous papers. In  several better-known fluid systems, some of the references 
available are : Eckhaus ( 1 9 6 ~  Kogelman & DiPrima (1970), Nakaya (1974), Riecke 
& Paap (1985)) on Taylor vortex flows; Newel1 & Whitehead (1969), Busse (1971), 
Busse & Bolton (1984) on Rayleigh-BBnard convection ; and Benjamin & Feir (1967) 
on Stokes waves. Eckhaus was the first author who studied the instability. Several 
others had also identified the fundamental role played by the instability in pattern 
forming, notably Kogelman & DiPrima (1970), Stuart & DiPrima (1978) and Kramer 
& Zimmerman (1985). In particular, in the work of Stuart & DiPrima, a unifying 
treatment of the instability was applied to  both Taylor vortex flows and Stokes 
waves. Their work shows that the physical mechanism that gives rise to 
Benjamin-Feir resonance, or the so-called sideband instability, is identical to that 
which gives rise to the Eckhaus instability in Taylor vortex flow. Among all the 
previous studies, perhaps the most celebrated result is implied by the following 
stability criterion : 

1 
IQ--oL,I < -Iao--a,l, (1.1) 

d3 

The above condition asserts that the bandwidth of the wavenumber of the stable 
nonlinear solutions is 1/2/3 of the bandwidth of existence of the solutions. From 
(l . l) ,  the two branches of the stability limit are symmetrical about the critical 
condition. Even more remarkable is that  while the derivation of the analytical limit 
is based on the lowest-order theory, such a limit continues to be valid, at least 
qualitatively, even when the control parameter becomes far away from the critical 
condition. 

I n  the paper by Or & Busse (1987) the fully nonlinear numerical results are based 
on a Galerkin formulation, which solves a full truncated eigenvalue problem. The 
results show that the right-hand branch (a > a,) of the stability limit is associated 
with a finite, rather than an infinitesimal value d *. Here d * denotes the limiting 
value of the wavenumber modulation, or the Floquet parameter. 

In  this paper, this unusual phenomenon will be further explored by means of an 
analytical theory. I n  $2, the mathematical formulation for the instability problem is 
developed. Instead of solving the full eigenvalue problem, the lowest-order solvability 
condition based on an amplitude expansion is derived. Such a condition not only 
permits room for more physical insight, but also is more efficient in terms of 
computation for obtaining stability curves. In  9 3, the growth-rate properties are 
studied. In  particular, the analytical results are compared with the Galerkin results 
so as to validate the former. In the analytical treatment, we also reproduce the 
stability limit for the ordinary convection rolls in the limit v* = 0. Such a limit which 
includes the first-order asymmetry was first derived by Busse & Bolton (1984). For 
the thermal Rossby regime, the solvability condition is further simplified to permit 
derivations of the growth rate coefficients based on the perturbation expansion in 
some asymptotic limits. In $4, we conclude the paper with a few remarks and 
discussions. 

2. The solvability condition 
A fluid-filled cylindrical annulus as shown in figure 1 is considered. The annulus 

rotates about its axis of symmetry with angular velocity Q. The inner and outer walls 
are kept a t  constant temperatures of and respectively. The gap width D is used 
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FIGURE 1. The cylindrical annulus apparatus with conical end boundary. 

as the scale for length; D2/v  as the scale for time, where v is the kinematic viscosity; 
and P(T, - T,) as the scale for temperature. The full derivation of the basic equations 
from the Navier-Stokes and the heat equation was given in Busse & Or (1986). These 
basic equations are 

(2.1) 
(a, - v2) v2@- v* a, $ + R  ay 8 = J($ ,  v2$),\ 

(pa,-v)o+a,$ = PJ($ ,o ) ,  

subject to the free-slip boundary conditions 

$ = a 2  X I  $ = e = o ,  x = - - l ~  2 ,  2’ 

In  (2.1), V2 = 
are defined as follows: 

Prandtl number P G - ,  

fa;,, and J denotes the Jacobian. The non-dimensional parameters 

V 

K 

Rayleigh number 
1/D31R2r0( T2 - TJ R E  , 

V K  

Coriolis number v * = $ ,  47l 

V E = -  
510, ’ Ekman number 

where K ,  y ,  ro, 1 and vo are respectively the thermal diffusivity, the coefficient of 
thermal expansion, the mean radius and the mean length of the annulus, and the 
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tangent of the angle between the conical end surface and the equatorial plane. The 
finite-amplitude solutions, at their lowest order of amplitude, have the form 

where 

$ = A sinn(x+&) sin (ay+wt )  +O(A3),  \ 
P o  sin (ay + w t )  + A cos (ay + w t )  

A 2  + P2w2 
8 = -aAsinn(z++) 

+ 0 ( A 3 ) ,  
A2Pa2A sin 2x(s + &) 

-I- 8n(A2 +Paw2) 

A2P2a2A 
R = R o  ( i +  8(A2+P2w2) + 0 ( ~ 4 ) ) ,  

= 00+0(A4), 

'*a A = (n2+a2) .  
( i + P ) A '  

, w o = -  
A(A2+P20i)  

a2 
R, = 

In the above expressions, A is the amplitude of motion, a is the wavenumber of the 
waves, and w is the frequency. The finite-amplitude solutions thus have an existence 
region where R 2 Ro(a)  for a given a. To investigate the Eckhaus instability of (2.2), 
we superimpose infinitesimal disturbances of the form 

& = f$ ,+A$,+A2&,+. . . )exp(d) , \  
S = (So+~S1+~2S2+ . . . ) exp(ut )  j 

to the basic solution ; where &, 8 satisfy 

( a , - v 2 ) v 2 g - ' * a , g + ~ a , S  = J ( & , v ~ $ ) + J ( $ , v ~ & ) ,  ( 2 . 4 ~ )  

(2.4b) (Pa,-V2) s"+ a, $ = PJ(&, 8)  + PJ($, 8) 

in the linear approximations. Here we are only interested in a pair of disturbances 
that correspond approximately to the translational neutral mode of the basic wave 
solutions, but have slightly modulated wavenumbers. Anticipating that the growing 
disturbance has a growth rate u of the order A or smaller, we obtain the zeroth-order 
solutions go and 0, as 

where 01, = a+ ( - l), d ,  o, = w +  ( -  l), w'd. The prime here denotes the derivative 
taken with respect to a. Expression (2.5) satisfies (2.4) at the zeroth order. The 
higher-order deviations are assumed of the order of A3, which will be accounted for 
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as soon as the solvability condition becomes available. In the next order balance, J1 
and 8, can be determined, given by 

2 

J1 = -isin2x(z+i) (-i)nq,~(n)exp[i(dy+w'dt)l, 

f, = x(a+an) [(a+a,) (iPw'd2+47t2+d2)+PRoHn]/4D, 
g, = x ( a +  a,) [cZ2(a +a,) + P( (4x2 +d2)2  +iw'd(4x2 + d 2 )  + iq*d) H,J/4D7 

12-1 

(2.6) 

a n  a H ,  = 
A n + i P (  - l ) " w , + A - i P (  - 1)"w , 

D = d2Ro - (4n2 -t- d 2  + iPw'd ) [ ( 4x2 + d2)2 + iq*d + i( 4z2 + d 2 )  w'd]. I 
These expressions have been derived in full without having to assume that d is small. 
In (2.6) the second harmonic modes of a have not been included. These modes can 
be shown to be much weaker and are therefore ignored. 

To obtain solvability condition from the next order balance, we must introduce the 
adjoint homogeneous problem of (2.4). We obtain 

9 (2.7) 
$* = sinx(X+i)exp[-i(-l)m(a,y+w,t)], e* =-  ia,( - l ) ,  $* 

A,+i(-l)mPw, 

where m = 1,2 and the asterisk denotes the adjoint solutions. We multiply ( 2 . 4 ~ )  by 
A;'$* and (2.4b) by A&1 R ,  8*, where R ,  = A,(Ak +P2wk)/ak; add and average the 
result over the fluid annulus; and obtain the secular terms in the form of a 2 x 2 
system with unknowns On), n = 1,2 : 

~ ( n )  { [c( 1 + (A, P(d;+P2w&) + i( - l ) m p w , ) z  ) - r m  +sm ] S,, + ixA2 r?) 
( A  - 4x2 - d2) 

X + 
n-1 

( A ,  -i( - l ) m  Pw,) f,( - 1)" d 
Pa, R ,  A 

where 

rm = ( g - i ) ( ~ , - i ~ ( - ~ ) m w , ) ,  s, = P2A2ak A2 (RR- l) 
8A,(A, + iP( - l), w,) Ro 

The term rm represents the real part of the remainder from the zeroth-order balance ; 
the term s, comes from the difference between linear terms - P 3, $o 3, and (R - R,) 
3,80. Since s, is roughtly a factor of R-Ro/Ro smaller than T,, the former can be 
safely ignored even in the moderately nonlinear region. The solvability condition 
(2.8) then consists of a balance between rm and the secular terms generated by 
nonlinearity. It is noted that the imaginary part of the remainder from the zeroth 
order, i( - l ) ,  (1  + P )  (w(a,)-w,) (where w(a,)  is the wave frequency at  a,), varies 
on the order A4 and is excluded from the present solvability condition. The 
subsequent analysis and the comparisons with the fully nonlinear results suggest 
that for all purposes, the lowest-order solvability condition appears sufficient to 
account for the instability. 
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3. Growth-rate analysis 
It is desirable to simplify condition (2.8) so that it reveals the dominant effects of 

the instability. We proceed in the following order : first, a simpler equation is sought 
without removing any of the essential effects; secondly, a stability criterion in the 
limit of ordinary convection rolls is reproduced ; thirdly, a perturbation expansion on 
the growth rate is developed, such that the growth-rate coefficients are derivable 
from some asymptotic limits ; lastly, a comparison between the analytical and the 
fully nonlinear result is provided. 

Assuming d 4 a, it  is convenient to express condition (2.8) by a Taylor expansion 
in d/a.  All the terms in (2.8) are Taylor-expanded in d / a ,  except the term D in which 
higher-order contributions can be large. After manipulating through algebra and by 
retaining only the first-order terms, condition (2.8) is simplified to 

( A  - i( - l)m) Po, 8P2n6A2 . G =-  P(A2 + P W )  

DRO 
where qm = 1 +  

( A  + i( - l)m P W ) ~ ’  

1 ( A  - i (  - l ) n P o )  a(2a+iPw’) ) 
VL? = 5+ 24 A + i( - l ) ,  Po ’ 

Equation (3.1) appears simpler. It has the property that the quantities with 
subscripts 1 and 2 are conjugate with each other. The term q ( O ’  comes from a phase- 
shifted term in g n  that is proportional to d.  The term 7;) comes from f,d. For large 
7*, the terms 7:) and 7:) are much smaller than 7(O) and 7;). They are of the order 
of (a,-a) and (am--) and come from the expansion of g,. Below we shall first 
consider the case of ordinary convective rolls. 

3.1. Ordinary convective rolls 

For 7* = 0, (2.6) and (3.1) evaluated a t  a = a, = n / 4 2  become 
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Further simplification of rm by expanding in d gives 

( - l )"(a-a,)d ( 2-  ria')) ~ +d2 (1 -(?))I (3.3) 

Thus the solvability condition (3.1) becomes 

(1  + P ) 2  u2 - (1 +P)  a(rl + r2 - 2A2G) + r ,  r ,  -A2G 

x r~+r2+(q'1)+7'2)+q'3))  (r1-r2)- -4A4G2(7(1)+7(3))7(2) - = 0. (3.4) [ a "1 (5)' 
Equation (3.4) is identical to  (2.11) of Busse & Bolton (1984). To facilitate 
a comparison between our results and theirs, we note that their notation (x, z,  -d, 
a, #, 0, Vz, A , )  corresponds to our (y, x, d, @,Re, A, ,  a;,). From (2.2), we also have 
97c2A2G = (R-R,). Anticipating u in (3.4) to be of the order of d2, we conclude that 
the leading-order balance comes from (1 +P) A2Gu and the constant term. Hence the 
leading-order expression for u is 

x [(R-R,- l S 7 ~ ~ ( a - a , ) ~ ) ] - ~ .  (3.5) 

Condition (3.5) reproduces the same stability region as Busse & Bolton's, up to the 
first order of asymmetry effects in a-a,. Since both the present and previous studies 
indicate that the higher-order effects contribute negatively to g, the instability is 
indeed sufficiently determined by the leading-order expression (3.5). Next, let us 
consider the regime of thermal Rossby waves. 

3.2. Thermal Rossby waves 

3.2.1. The perturbation scheme 

is 
Equation (3.1) can be re-expressed in the form of a quadratic equation in u, which 

Q 1 4 2  uz + [ -41 r2 -42 rl +A2(% G2 +42 G1)I a+r,  7-2 

-rlAzG, l+-(i7(o)+qi1)) -r,A2Gl l+-(iq(O)-q$l)) = 0. (3.6) 

The O(A4) contribution to the equation can be shown to be small and therefore is 
neglected. For the regime of interest, especially one that is relevant for geophysical 
applications, 1;1* is of the order of lo3 or higher. Independent of the Prandtl number, 
the terms 7:) and 7:) can also be neglected since they are a t  least an order of 
magnitude smaller than q(O) and 7:). with some algebraic manipulation, (3.6) can be 

(3.7) 
rewritten in the form 

au2+bu+c = 0, 

where its coefficients are expanded in d, 

[ :  1 [ :  1 

a = a,+ia,d+a,d2, 
b = b,+ ib, d + b,d2 + ib,d3 + b4d4, 

c = c ,  d2 + ic, d3 + c,d4 + ic, d5 + c6 d6, 
u = r 2 d 2 + i ~ , d 3 + u 4 d 4 + i u , d 5 + u , d 6 +  ... . 

Before showing the expressions for the expansion coefficients, we note that all of the 
coefficients are real. Furthermore, the even and odd powers are consistent with the 
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property that a ( d )  = a*( - d )  (here the asterisk denotes complex-conjugate). The 
expressions for the coefficients are 

a 0 - 1 - 2  - 3p+P2, a, =p1(1-$P+P2),  a, =p2(l-gP+P2), 

2 4  2P 
R C  R e  

b, = ( 1  + P ) A 2 , b ,  = --P( 1 - P )  w,(a-a,) 

P 
,-Re b - - (2P(1  -P)  w,p,(a-a,) + (1 +P) A,), 

P 
Re 

where 
= $ P A :  A,, r ,  = - (A,  + P w C )  [ - (-  l), (a-a,) d-S2], /3 = Rg. 

The p, terms come from expanding D, where D = - 64ns( 1 + ip, d +p, d ,) ; their 
expressions are 

1 -1  
- 16x4 64n 
- - (4n2( 1 + P )  W’ + q*) ,  pz = 8 (R, + Pw’(T* + 47~’~’)).  

Expressions (3.8) come from the leading-order terms of the Taylor expansion in d 
about the critical condition. Since (3.7) is complex, its solutions in closed-form do not 
produce any simple expressions for the instability criterion. The quadratic equation, 
however, can be efficiently solved on a computer. Alternatively, if we assume that 
d -4 a-a, and A is finite, then proceeding on the expansion scheme as outlined in 
(3.7) the equation yields the following sequence of equations : 

(3.9) I b,a,+c, = 0,  
b,a,+c,+b,a, = 0, 

b, ad +a, 
b, a5 +a;, 
b, a6-uo a:-., a, us+ a, a:- b, C T ~  + b, a, - b, a, + b, a, +c, = 0. 

- b, a, + b, a2 +c, = 0, 

a, +a;, + b, a, + b, a, + b, CT, +c, = 0, 
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While the expansion scheme is advantageous in providing useful results, it is 
cautioned that such a scheme may only be valid for a sufficiently small value of d ,  
that is within the radius of convergence of the series. An estimate of the radius of 
convergence can be obtained by comparing successive terms in the series. 

3.2.2. Analytical result 
From (3.9) and the expression of c, in (3.8), we obtain 

where K = - a' (4 -+- " ) [ l + P - ' ( l - - Z ) ] ,  A2 = ( R - R , ) - ~ ~ ( a - a , ) 2  
8n2 P x2aE 

The corresponding stability region is given by 

( 3 . 1 0 ~ )  

(3.10b) 

For q* = 0 , p  = 361r,, (3.10b) reproduces the same stability region of ordinary 
convection to the leading order as that determined by (3.5).  The small difference 
between the two expressions is due to the ignoring of qt) and q1;1' for the present case. 
For q* of the order of lo3 or larger, the asymmetry term (a-a,)/a, in (3.10b) exerts 
a strong influence. Such an effect is evident from figure 3 below where K > 0 (see the 
left-hand branch dashed curve and the right-hand branch dotted curve). 

A close examination of the expression for K in (3.10a) reveals an even more 
interesting property, namely, K becomes negative when 

(3 .11 )  

independent of the value of q*. Since the existence of solutions requires a, > w / z / 2 ,  
condition (3.11) only can be satisfied for a, if P < 9. In  particular, as P +  0, condition 
(3.11) requires a, < 4 3 n .  Typically, for P of order unity, a, is of the order of q*g as 
v* +. 00. But even for large q*, if P is small enough, a, can remain of order unity such 
that K is negative. In  this case (3 .11 )  can still be satisfied. As P- t  0, K becomes very 
large since it varies as P-,. Thus for small P ,  the two branches of the stability limit 
can be severely distorted. This is typically what figure 5 shows. Indeed close to the 
critical condition, the branches are shifted to the left. For larger R ,  as the higher- 
order effects come in, the right-hand branch turns to the left via a fold. Such higher- 
order effects are not apparent from inspecting (3.10a, b ) ,  but they will be indicated 
and discussed in the numerical results in 53.2.3. 

On account of the rapidly progressing algebraic complexity, a full evaluation of the 
higher growth rate coefficients becomes difficult. In the asymptotic limit q*+ co, 
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however, certain simplifications are available. The following asymptotic expressions 
become useful in the evaluation of the expansion coefficients : 

(3.12) 

The actual algebraic simplifications come from assuming A; 4 x, which typically 
holds when ti* is larger than lo4 where P is of order unity. In  such a case we can 
neglect altogether terms that are associated with x2h-f. In fact the condition hi 4 
precludes the cases of low Prandtl number, where ac is of order of x. Further 
simplifications lead to 

h + (%P-' ( 1 + P)3 :A4 + 128 4 2( 1 - P) h-+A^') x 

+ 8 2/2P-I(3 -P)  (1 + P) x ( a ~ ~ ) l - 1 4 7 2 ~ 2 ( 1 - P ) 6  __ (aa.)"] - (3.13) 

and 

+ ~ 16 ~ - 2 ( i  -2P) ( 1  +P) (1 -P)2d4 +&P-'( 1 + P)5 -A6) r2) 
(3x4 x12 

6144(1 -P)?d2 + k P 2 ( 1  + P)' ( -6P4 +4P3- P2 + 8P+3) 

+P-'(l+P)(3858- 

- 2048(41- 52P + 41P2) As ( a - - y ] .  ~ (3.14) 

Inspecting (3.13) and (3.14), we observe that the signs of r3 and r4 are strongly 
influenced by the first-order asymmetry terms proportional to (a  -a,/a,). For both 
u3 and u4 the contribution to the asymmetry terms has strong depe_ndence on the 
amplitude A. By inspecting the expressions, it is apparent that  when A is larger than 
a certain critical value (also see figure 4), both u3 and g4 become positive for a > a, 
and negative for a < a,. 
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FIQURE 2. A comparison of the growth-rate dependence on the wavenumber modulation 
parameter for (a) the right-hand and ( b )  the left-hand branch of the stability limit. 

3.2.3. Numerical results 
Here we provide some interesting comparisons of the analytical results from the 
solvability condition with the fully nonlinear results from the earlier Galerkin 
formulation. Figure 2(a,  b)  shows a family of curves corresponding to the case P = 
1 ,  r* = 2.8 x lo3 and R = R,+2.82 x lo3. The two figures contrast the typical 
asymmetry behaviour of the growth-rate variation with d on the two half-bands of 
a,. In  each figure, results from two different a values are shown : in figure 2 (a )  a = 
10.6 (lower family of curves) and 10.3 (upper family of curves); figure 2(b )  shows 
a = 8.8 (lower family) and 8.5 (upper family). The solid curves represent solutions 
from the Galerkin method; the heavy dashed curves represent solutions from (2.8); 
and the thin dashed curves represent solutions from (3.6). The solutions from (2.8) 
agree with those from the Galerkin method reasonably well. The qualitative 
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8.0 
1- 

8.5 
a 

FIGURE 3. The stability limit in the a versus R plane for P = 1 and T/* = 2800. 

behaviours of the results from all three different methods appear similar. Other than 
the accuracy concern, therefore, the simplified equation (3.6) has retained the 
essential instability properties. The straight curves shown in the figures are the ui 
value corresponding to the Galerkin formulation (see Or & Busse 1987). Note that in 
the Galerkin scheme the imaginary part of the eigenvalue was formulated in terms 
of the drift rate, rather than the frequency. The frequency modulations appear to be 
dominated by the zeroth-order effect, all three frequencies appear indistinguishable. 
In figure 2 ( a ) ,  the curve corresponding to a = 10.3 appears to lie quite close to the 
stability limit. At this limit the curve will be tangent to the d-axis a t  a finite value 
of modulation denoted by d *. Figure 3 shows the corresponding stability diagram in 
the (R, a)-plane for the same P and r* as in figure 2. The stability limit corresponding 
to (2.8) is shown as the dashed curves. The left-hand branch of the stability limit is 
determined by the sign change of u2. The right-hand branch of the stability limit that 
is due to sign change in u2 is shown as the dotted curve. Note the strong asymmetry 
of these two branches with respect to a,. On the right, preceding the dotted curve is 
a dashed curve typically corresponding to a finite value of d *. The dashed curve 
marks the real stability limit. The more accurate stability limit determined from the 
Galerkin method appears as the thin solid curves in the figure. Again reasonably good 
agreement between the analytical and the Galerkin is shown from the stability 
diagram. On the right half-band of the stability diagram, it is natural to inquire how 
the dashed branch and the dotted branch of curves are connected. We magnify the 
region where these two curves meet. Figure 4 (a)  reveals that in fact the dashed limit 
emerges from the dotted limit a t  a finite amplitude. Thus for R less than the value 
marked by point L, no finite-d effects can be expected. Within the numerical 
resolution, however, it is difficult to determine whether the two curves intersect at  
a finite angle or are tangent to each other. At point L, d * is non-zero. Near point L, 
the growth rate variation with d exhibits a double peak feature, as figure 4(b) shows. 
In the figure, the three curves denoted by A, B and C correspond respectively to 
01 = 9.7186, 9.7188 and 9.7190. For all three curves, R = 30938. 

The features of the instability just described persist over a wide range of finite r* 
that is of the order of lo2 or larger, except when the Prandtl number becomes small 
(see below). To illustrate more about the growth-rate behaviour as well as its 
dependence on Prandtl number, we consider an example in which the growth-rate 
coefficients are evaluated through (3.7), (3.8) and (3.9). Near the critical condition, 



3.097 

3.096 

R x 10-4 
3.095 

3.094 

3.093 

4 

T X  10' 

C 

The Eckhaus instability of thermal Rossby waves 625 

4 
0 

0 

0 
0 

I I I 
9.72 9.73 9.74 

a 

0.1 0.2 0.3 
d 

FIQURE 4. (a) An enlarged version of the right-hand branch of the stability limit of figure 3 near 
the region where branching occurs; (b)  the corresponding growth-rate dependence on the 
modulation parameter at a point in the region. 



626 A .  C.  Or 

a = a; u = a, a = CL; & = ,** 
P = 0.2, (R-R , ) /R ,  = 2.31 x lo-', d *  = 0.4 

a-a, -0.210 0 0.423 0.454 

ff3 -11.28 - 10.04 25.25 16.09 
ff4 -5.791 - 13.27 78.4 63.4 

ff2 0 -6.638 - 3.683 0 

ff5 36.9 1.323 -273.0 -351.4 
ff6 -0.116 68.1 -594.6 - 1444.3 

P = 1.0, (R-R , ) /R ,  = 9.19 x lo-', d *  = 1.5 
U-a, -0.322 0 0.920 1.352 

ff2 0 -5.024 - 13.27 0 
g 3  -7.235 0 21.98 35.74 

u6 37.6 -0.039 -62.65 54.73 

r4 - 12.96 0.036 26.42 28.8 
ff5 21.72 0.007 -44.9 - 99.02 

P = 10, ( R - R , ) / R ,  = 4.10 X lo-', d* = 1.4 
,-a, - 1.331 0 0.790 1.028 

ff3 -0.023 1.439 1.851 6.168 
ff2 0 -0.979 - 1.769 0 

ff4 -0.622 2.136 1.115 -21.37 
ff6 0.814 -4.308 - 2.589 - 106.2 
u6 2.245 - 6.922 5.832 578.3 

TABLE 1. The lower-order Taylor-expanded growth-rate coefficients 

4.9650 I I I I 
3.1 3.8 3.9 4.0 4.1 

a 
FIGURE 5. The stability limit in the u versus R plane for P = 0.05 and r* = 4000. 

table 1 shows the limiting values for the four wavenumbers on the band. Prom the 
table, a:, a: and a%* corresponds respectively to values on the left-hand dashed, 
right-hand dashed and right-hand dotted curves of figure 3. For larger P (not shown), 
the growth-rate behaviour remains similar. In all cases, the g3 and g4 values on 
opposite sides of a, have opposite signs. On the right-hand dashed curve, g2 is 
negative while c4 is positive. The signs of c3 and c4 are roughly correlated. 

A dramatic change in the characteristics of the instability limit occurs at  low 
Prandtl number. Figure shows the stability region corresponding to a small Prandtl 
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number and a moderately high Coriolis parameter, such that P = 0.05 and q* = 
4000. The central band of stability practically disappears into the instability. The 
stable region is now a narrow strip leaning towards the far left of the primary neutral 
curve. The solid curves are obtained from the full Galerkin method. The dashed 
limits are obtained from evaluating (2.8). The two set of limits are qualitatively 
similar and reasonably close to each other. In both cases, the right limit corresponds 
to a finite d and the left limit corresponds to infinitesimal d. However, the values of 
d * along the limit obtained from the Galerkin method are slightly smaller than those 
obtained from the solvability condition. Typically, the value of d * obtained from the 
Galerkin method is about 0.1 and from the solvability condition i t  is about 0.2. The 
dotted curve which appeared as nearly straight line separates the unstable region 
into a stable region (left) and an unstable region (right) with respect to infinitesimal 
modulation. The above numerical results on the small-Prandtl-number limit can be 
better understood by relating to these results to the analytical results of the last 
section. For small P, as we recall, K becomes very large. As 01 approaches a value close 
to 3.95, the term l+~[ (a -a , ) /a , ]  tends to zero. Thus the dotted curve actually 
determines the limit where the denominator of (3.10b) changes sign. It renders the 
condition (3.10b) unable to be satisfied for all R > R,, which implies that higher- 
order effects become important. Unlike the case shown in figure 3, in figure 5, above 
the fold, the finite-d instability is due to a6 > 0, where a4 is typically negative. 
Computing (3.7) shows that the growth rate coefficients for the region between the 
right-hand dashed limit and the dotted curve are such that a2 and a, are both 
negative, but a6 is positive and is a t  least two order of magnitude larger than the 
corresponding a4. For example, a t  a = a, and P-'R = 49710, a2 = -4.95, u3 = 
111.55, a,=-722.1, a ,=3 .06x103,  and a6=3.77x105.  

4. Concluding remarks and discussion 
The paper provides an analytical extension of the results obtained from the earlier 

Galerkin method; the latter analysis appeared in Or & Busse (1987). Through the 
analytical approach, a broader view of the instability emerges. In  particular, the 
parameter dependence of the stability limit can be sufficiently understood without 
having to compute numerous eigenvalue solutions. Two major effects have been 
identified in this paper: an onset of instability corresponding to finite Floquet 
parameter over the right-hand branch of the stability limit; and the shift of the 
stable band of solutions to the far left at low Prandtl number. For the latter effect, 
the familiar parabolic-shaped stable region actually turns into a narrow strip close 
to the left-hand branch of the primary neutral curve. Both effects appear to be a 
result of higher-order phenomena. These effects do not seem to occur in the several 
other better-known pattern-forming systems, in which the Eckhaus instability has 
been extensively studied. 

The asymmetrical natue of these two effects seems to  indicate that the frequency 
modulation of the disturbances plays an essential role in influencing the instability 
dynamics. Such frequency modulation depends intricately on the basic wavenumber, 
the modulation parameter and the amplitude of the wave, but no closed-form 
expression for the modulation is available. By examining the perturbational results, 
we are convinced that the frequency modulation exerts a dramatic influence on the 
higher-order growth rate. As P + 0, the change in characteristics of the stability limit 
is not entirely surprising. Physically, in the low-Prandtl-number limit, the 
importance of the thermal nonlinearity shifts its importance to the hydrodynamic 
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nonlinearity. Thus the thermal Rossby waves in effect approach the inertial wave 
regime (see Busse 1983). 

One last point we would like to mention is that even though the foregoing 
development appears quite cumbersome, the treatment does reflect the relative 
simplicity of a two-dimensional system as compared to a three-dimensional one. For 
example, a distorted stable region in the shape of a ‘toe’ has also appeared in an 
experimental study of wavy Taylor-vortex flow (see King & Swinney 1983). 
However, for such a system a solvability-condition approach is probably out of the 
question. To conclude, it is hoped that experimental techniques for measuring the 
wavelengths of the drifting thermal Rossby columns will soon become available so 
that the theory can be tested. 

I am grateful to Professor F. H. Busse for many helpful discussions. The work was 
supported in part by the National Science Foundation, under the grant number AST- 
8796285; and in part by a grant from the Lawrence Livermore Laboratory. 
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